

Determining the Players' Efficiency in NBA: Some Economic and Managerial Results

Ensar Yesilyurt

Pamukkale University Department of Economics, Kinikli Campus, Denizli, Turkey

Correspondence with:

Ensar Yesilyurt meyyurt@pau.edu.tr

Pamukkale University Department of Economics Kinikli Campus, Denizli, Turkey

International Journal of Sport Management Recreation & Tourism, Vol.13, p.1-19, 2014

© 2014 I.J.S.Ma.R.T. All rights reserved. ISSN: 1791-874X

To link to this article: http://dx.doi.org/ DOI: 10.5199/ijsmart-1791-874X-13a

Determining the Players' Efficiency in NBA: Some Economic and Managerial Results

Abstract

Player efficiency is estimated by using Data Envelopment Analysis (DEA) and data of 401 players in NBA at 2006 in this study. Three approaches are generally used when measuring the efficiency of basketball players. In the first, which is frequently used in the literature, a variety of payments and fees are used as inputs. The second is used by basketball associations that correspond closely to the theoretical definition of efficiency because it tries to measure players' contribution to their team by using games statistics. The third which includes different type of approaches is used in the literature and takes into account games statistics like previous one. In this study, however, an alternative approach is used. It is different from the first method in that it measures the success of the players within the game, and it is also different of the second and third method because of the approach. According to results, there are differences between the ranking of the players obtained using the NBA system and the approach recommended in this study.

Keywords: NBA; sportive efficiency; managerial results

Determining the Players' Efficiency in NBA: Some Economic and Managerial Results

Introduction

Sporting events play a significant role in the entertainment sector, and their effect is strengthening daily. Basketball games are among the most popular sporting events. In view of the increased importance and popularity of basketball, it comes as no surprise that basketball players now sign huge contracts. Hence, sporting events have a considerable direct and indirect effect on the economy.

In parallel with the increased importance and popularity of sports, there has been a rapid increase in the number of studies investigating the effects of this development on economic and social life. Studies of sports economics can be divided into two groups according to the objective of each study. The first group of studies focuses on the sports market. Scully (1974), for example, analyzes the relationship between players' fees and performance, whereas Zech (1981), Atkinson, Stanley and Tschirhart (1988) and Carmichael and Thomas (1995) analyze sports structures using production functions. Schmit and Berri (2001) focus on the competitive structure of basketball leagues, whereas Scully (1998) and Krautman and Berri (2007) examine inelastic pricing structures. Barget and Gouget (2007) analyze the determinability of the economic value of sports, and Schmit and Berri (2005) analyze the determinants of the players' talent. Surden (2006) uses chaos theory, developed in the 1960s, to analyze the American basketball league, and Leadley and Zygnot (2005) examine the honeymoon effect for different sportsmen. Finally, Osborne (2001), Rodney and Weinbach (2002) and Sapra (2008) discuss the market structure of the American football league.

The second group of studies is concerned with the efficiencies of teams, managers and players. These studies have usually been carried out via stochastic frontier analysis (SFA), data envelopment analysis (DEA) and the other statistical methods which are mentioned below. These studies have emphasized team, manager and players success. Some of the studies that have used SFA and DEA are as follows. Carmichael et al. (2001) analyzed the efficiency of football teams, and Berri and Jewell (2004) investigate whether there is a relationship between price imbalance and team productivity. Lee and Berri (2008) determined the variables influencing player talent in team production using multi-stage modeling and SFA with different estimators to determine the effect of player talent on team productivity. McGoldrick and Voeks (2005) used SFA to calculate the relationship between efficiency and a team's probability of winning. Escuer and Cebrian (2004) calculated the efficiency of Spanish football teams using SFA, and Haas (2003) did the same for the

English football teams. Leibenstein and Maital (1992) analyzed the efficiency of hockey players using DEA, as did Fizel and D'itri (1996) for college basketball coaches and Sueyoshi (1999) for basketball players. Lewis H. F., Sexton T. R. and Lock K. A. (2007) examined the relationship between payments to basketball players and efficiency. Besides SFA and DEA the other methods are also used for calculating the performances of players. These advanced and widespread methods are subjected to some researches. Hollinger (2005) used John Hollinger's Player Efficiency Rating method and give detailed information and formulation in his book. Other methods include Win Score and Win, by Berri, Schmidt and Brook (2006), and Win Shares, by James and Henzler (2002). Winston (2009) analyzed several rating systems, in addition to the NFL system, for many types of sports. All of these systems are very important and are used on websites such as basketball-reference.com, espn.go.com, and waynewinston.com. Additionally, Butenko Gil-Laufente and Pardalos (2004 and 2010) studied management and development strategies other than performances.

The current study aimed to focus on player efficiency. According to all parties interested in sports efficiency there are three different uses of the term of "player efficiency" that do not fully coincide, both of which capture "performance". The first is "technical efficiency"1, which is usually used in academic literature and calculated using DEA or SFA. The second is used to measure performance or the value of players in basketball federations such as NBA. The third is used the other statistical methods and game's statistics. The term "efficiency" in this study is used to express the efficiency of the players like the second and third group because this efficiency term is based on the statistical figures of players and the team as a whole during the game. Additionally, although the term is based on player statistics, it does not have the weaknesses of the efficiency term used by second and third methods based on the absolute values. Accordingly, the efficiency values have been obtained in this study based on economic terminology and referring to statistics for scoring, rebounds, etc., as used in calculating the efficiency value used by the NBA. As is mentioned in some of the literature above, the definition of efficiency used by the NBA that indicates players' contribution to their teams in terms of scores, rebounds, steals, etc., seems to be inadequate. Some questions are appropriate at this point. Why is that definition inadequate? Will two players with the same efficiency level be seen as having the same *level of success?* In other words, suppose that two players have the same efficiency levels but play for different teams, and one team has better performance statistics than the other team. In that case, will the two players with the same efficiency be accepted as equally successful? This perspective does not depend on relative evaluations and ignores the contribution of the entire team, whereas economics is analyzed using relative values rather

¹Any decision-making unit output/full efficient decision-making unit output.

than absolute ones². In other words, the efficiency scores calculated by the NBA to measure player performance are based on absolute values and are obtained by summing, subtracting, multiplying and dividing player statistics. However, a player's success is closely associated with the performance of his opponents and of his own team. Therefore, making calculations using absolute values exclusively may yield misleading results. Thus, there is a need for approaches that consider the effect of team success on the player while also calculating player efficiency. This will allow relative measurements to be consistent with standard economic analysis. Of course, the more successful the team is, the more successful the player is (ceteris paribus).

Based on all of these issues, this study makes pertinent recommendations and presents new ways to calculate player efficiency based on inputs and outputs that emerge during the game. As a result, this study presents information that can be used as an indicator in a more understandable, acceptable and clearer way. Additionally this study provides information that will enable the player (worker) to assess and learn his real value as a producer of a particular outcome, the boss/manager (employer) to learn the employee's real value, and the audience (the customer) to learn the real values of the players, who are the most important actors during the event (entertainment). Also, all inputs and outputs used in the analysis are acquired based on the interactive contributions of the players during the game, As far as we know, this study is unique in evaluating performance using these variables.

To that end, this study uses DEA. Even though SFA, a parametric method, is used in efficiency calculations, DEA is preferable in this study because it is based on a multipleoutput analysis. In this study, data sets will be introduced, the methodology will be explained and the results and inferences will be discussed. Then, we will analyze whether the efficiency levels calculated in this study or those provided by the NBA system better predict team success.

Methodology

Data Sets

Because this study is a bit different in terms of its data sets, it may be useful to explain why and how the inputs and outputs in this study are used. This will help us to explain the motivation and purpose of the study more clearly. Whereas the fees paid to players have been used as the input in previous studies, game statistics are used as the input in this study.

² These definitions were the basis of the analyses by A. Smith and some pioneering economists. Moreover, relative values are taken more seriously in the analysis of economic variables. For example, any economic unit's variables, like wealth, wage and GDP, may be able to remain abstract and insubstantial unless compared with the other economic units.

There are a few concerns to take into consideration in this context. First is ambiguous of players' revenue. The revenues received by players have become more uncertain because they do not declare their income from advertisements and non-sports activities even if their contract fees are known. For example, a team with a high potential for attracting advertising contracts may assure a player that he will receive high advertising revenue and correspondingly offer a lower contract figure. Therefore, the fees paid to players on a particular team may not be homogeneous. Another problem is that sometimes two different contracts are issued, one legal and the other illegal, so that the player will be able to pay less in taxes. Legal contracts may declare lower fees in the countries where tax control is weak and where people often avoid paying or dodge their taxes. Therefore, contracts in some countries do not reflect actual compensation. Moreover, contracts are usually signed for just two years or so. This is largely because players in the middle of their careers in terms of age may not have sufficient motivation to maintain their level of performance if each contract covers a long period. In its current form, the contract guarantees the player's actual income but may not provide enough motivation for sustained high performance to enable the player's potential future income, as negotiated in the subsequent contract, to be high.

In addition, a large contract may cause a trade-off similar to the labor-spare time relationship in the literature. Thus, the performance analyses that are carried out using the statistics for all players on a team are also important because they indicate the success of each player in the game and the level of his interaction with the rest of the team.

Considering all of these issues, this study suggests an alternative way of calculating player efficiency. Each player's scoring, rebounds, blocks, steals and assists were taken as the outputs. The score is the basic indicator of player and team performance. Blocking and stealing are the beginnings of the attempt to score. Assists are the last movements that occur before a team scores. Accordingly, each of these moves contributes to performance. What is different about this study is the input: the sum of the assists, blocks, steals and rebounds of all of the team's players except for the player being analyzed. No player can score unless he is supported and assisted by his team through blocks, steals, assists and rebounds. The operative assumption is that the other players' attempts should also be taken into account in evaluating a particular player's performance.

As a result, four different alternatives were tested in this study. In the first one, the outputs were taken separately from the assists, rebounds, steals, blocks and scores for each player. The inputs, however, were the assists, rebounds, steals and blocks for all players on the team except for the player under analysis (DEA1). In the second alternative, because the values of all outputs except for scoring were lower, their sum was accepted as an output, while the outputs were defined. In this way, the outputs were taken separately as the sum of player scoring and other statistics (DEA2). In these two alternatives, each match was

analyzed separately. In other words, all the matches in which each player played were taken as separate decision units (15548 units). In the third alternative, each player's seasonal average assists, rebounds, steals, blocks and scores were taken as output, while the seasonal average assists, rebounds, steals and blocks of the other players in the team were taken as inputs (DEA3). In the fourth alternative, the outputs and inputs are same with second alternative but they depend on seasonal average like DEA 3 (DEA 4). In the last two alternatives each player were taken as separate decision units (401 units). The average statistics are given in Table 1³.

	I	able	1.	Descri	ptive	statistics.
--	---	------	----	--------	-------	-------------

Stats	Means	Standart deviations
Player		
1. Total rebound	4.05	3.49
2- Assist	2.03	2.51
3- Personel foul	2.25	1.56
4- Steal	0.71	0.99
5- Turnover	1.36	1.41
6- Bloces	0.47	0.91
7- Points	9.62	8.46
8- (1+2+3+4+6)	87.31	13.65
Teams		
1. Total rebound	36.79	6.74
2- Assist	18.49	5.30
3- Personel foul	20.55	4.62
4- Steal	6.42	2.70
5- Turnover	12.37	3.71
6- Bloces	4.23	2.47
7- Points	87.31	13.65

There are two reasons why we used player-based statistics in c analysis. Firstly we seek to determine what kind of distinctions we can arrive at using game statistics, and secondly, we wish to inspire debate about the different alternatives suggested in this study.

A total of 401 players are included in this study. The total number of games that these individuals have played is 15,548. Accordingly, 15,548 decision units exist for analysis using the first and second alternative methods. We thereby calculated the average efficiency scores for the players in each game.

Data Envelopment Analysis

In this study, players' efficiency levels were analyzed via the DEA method, which is commonly used in scientific research and performance measurement. DEA has also proven to be an ideal method for use in cases with several outputs. In this study, because there is more than one output, the DEA method is considered a suitable method of analysis. The foundational studies using the constant returns to scale (CRS) DEA method were performed by Charnes et al. (CCR) (1978 and 1981). Banker et al. (1984) also used the variable returns

³ The data set used in this study was downloaded item by item from the team information pages at http://www.nba.com.

to scale (VRS) DEA method for efficiency analysis. CCR used piece-wise linear hull production technology as proposed by Farrell in 1957.

In this study, the analysis is conducted under the assumption of variable returns to scale because this technique yields more efficient and successful results. For instance, imperfect competition and financial difficulties prevent firms from working at an optimal scale, and CRS solutions can reflect technical and scale efficiency jointly. However, the use of VRS enables us to distinguish values for technical efficiency from those for scale efficiency values and measure pure efficiency. VRS includes the convexity constraint $l'1'\gamma=1$, whereas CRS does not, and can be written as:

$$\min_{\phi,\gamma} \phi$$

st $q_i + Q\gamma \ge 0$
 $\phi x_i - X\gamma \ge 0$
 $I1'\gamma = 1$
 $\gamma \ge 0$

Where *I*1 is an *I*x1 vector of ones, ϕ is a scalar and γ an *I*x1 vector of the constants. x_i and q_i are the input and output column vectors of the *i*-th firm, assuming that there are *K* inputs and *T* outputs, respectively. Therefore, for *I* firms, *X* denotes the *K*x*I* input matrix and *Q* denotes the *T*x*I* output matrix. The technical efficiency scores of this approach are greater than or equal to those obtained using the CRS model because the VRS model provides a convex hull of intersecting planes that envelop the data points more tightly than the CRS conical hull does [Coelli (1996), Coelli et al. (1998), Yesilyurt (2008)].

Results

Each player's performance in the games was taken as the output, whereas the team's performance was taken as the input. In this way, the efficiency analysis conducted under significant limitation and according to absolute values presented by the NBA and other organizations was rendered more functional. With the effect of the other players' performance on the player in question determined in this context, the players' performance was analyzed using relative values. In the 1st column of the Table 3, there is the rank of the players where the efficiency score is based on NBA system and in the 2nd there is the efficiency scores is based on DEA1 respectively, in the 5th and 6th column, rank of the players' efficiency scores are based on DEA2 respectively, in the 7th and 8th column rank of the players and the players and the players' efficiency scores are based on DEA3 respectively, in the 9th and 10th column rank of the players and the players' efficiency scores are based on DEA4 respectively.

Table 2. Efficiency scores of players.

1	=	III	IV	v	VI	VII	VIII	IX	X	I	II	III	IV	V	VI	VII	VIII	IX	X
1	K. Garnett, MIN	3	0.736	3	0.757	1	1	1	1	102	C. Frye, NYK	45	0.584	34	0.660	19).925	22	0.925
2	L. James . CLE	1	0.775	1	0.769	1	1	1	1	103	J. Magloire . MIL	78	0.520	61	0.632	36	0.906	41	0.906
3	S Marion PHX	12	0 703	11	0 711	1	1	1	1	104	S Parker Al	134	0 471	204	565	141	1835	170	1828
Ă	E Brond LAC	12	0.606	10	0.695	1	1		0.070	105		102	120	0.1	5.000	010	0.000	222	0.020
	E. BIANU, LAC	13	0.090	19	0.000			4	0.976	105	- BIEZEC, CHA	192	0.430	201	0.505	219	0.003	233	0.003
5	K. Bryant, LAL	15	0.686	22	0.681	1	1	1	1	106	E. CUTTY, NYK	50	0.564	41	1.652	16	0.93	20	0.927
6	D. Nowitzki , DAL	33	0.610	54	0.637	42	0.903	46	0.903	107	E. Jones , MEM	99	0.500	04	0.608	45	0.9	54).896
7	D. Wade , MIA	14	0.688	17	0.685	1	1	8	0.961	108	R. Felton , CHA	83	0.517	138	0.589	95).864	139).843
8	A. Iverson , PHI	7	0.713	13	0.705	1	1	1	1	109	M. Dunleavy , GSW	131	0.474	150	0.584	186	0.815	97	0.815
9	M. Yao , HOU	30	D.617	37	0.657	1	1	1	1	110	B. Gordon , CHI	165	0.449	243	0.553	142	0.834	153	0.834
10	Bosh TOR	16	0.683	5	0.753	1	1	1	1	111	M Harpring LITA	264	406	254	551	176	0.82	186	0.82
11	Dioroo BOS	24	0.000	10	0.000	10	0.045	15	0.045	440	Clayton NOK	-04 50	0.400	52	0.001	E0	0.02	62	0.02
10	P. Fleice, BUS	24	0.034	10	0.000	12	0.945	15	0.945	112	B. Claxion, NOR	00	0.001	004	0.030	007	0.70	02	0.009
12	G. Arenas, WAS	8	0.712	12	0.707	1	1	3	0.984	113	Barbosa , PHX	351	0.372	331	1.529	267	0.78	279	0.78
13	5. Nash , PHX	20	0.656	91	0.614	1	1	97	0.863	114	J. Przybilla , POR	26	0.624	25	0.676	1	1	21	0.927
14	P. Gasol , MEM	10	0.706	6	0.736	1	1	1	1	115	D. Stoudamire , MEM	174	0.445	64	0.580	79).874	95	0.864
15	F. Duncan , SAS	21	0.652	14	0.696	1	1	5	0.975	116	A. Mourning , MIA	130	0.474	281	0.544	106).857	250).794
16	M Camby DEN	29	0.617	29	0.666	1	1	2	0.999	117	A Walker MIA	251	0 412	239	0.554	172	822	180	0.822
17	A Kirilonko LITA	10	0.670	27	0.671	1	1	17	0.020	110	Dubon CHI	120	169	012	562	125	0.022	146	0.022
10		10	0.070	21	0.071	1	4	25	0.000	110	A Daniele DAL	100	0.400	205	0.505	100	0.000	140	0.000
18	J. O'Neal, IND	19	0.668	20	0.684	1	1	35	0.908	119	M. Daniels , DAL	160	0.450	235	1.555	198	1.812	207	0.812
19	C. Webber , PHI	34	0.607	28	0.670	6	0.958	25	0.923	120	E. Dampier, DAL	132).472	80).574	169).823	81).822
20	L. Odom , LAL	5	0.717	8	0.719	1	1	1	1	121	K.Korver , PHI	195	0.437	211	0.564	242).792	255	0.792
21	J. Kidd , NJN	37	0.596	38	0.655	15	0.932	36	0.908	122	D. Miles , POR	119	0.485	26	0.674	4	0.973	6	0.973
22	D. Howard . ORL	6	D.716	2	0.769	1	1	1	1	123	C. Wilcox . SEA-LAC	196	0.436	212	0.563	215	0.806	227	0.806
23	C Paul NOK	2	0 754	4	0 754	1	1	1	1	124	A Croshere IND	072	1 403	206	564	178	0.819	189	0.819
		~		-	0.704	-		<u>ا</u>		.27	/ Padmanovia LAC	-12		-00					
24	R. Allen , SEA	62	0.547	74	0.624	72	0.88	98	0.863	125		181	0.442	224	0.560	256	0.784	270	0.784
				40.				-											0.005
25	J. Anthony , DEN	80	J.518	131	0.594	25	0.92	27	0.92	126	M. Blount , MIN-BOS	224	J.423	72	J.578	137	1.836	150	J.836
26	C. Billups , DET	41	D.588	122	0.600	14	0.933	113	0.856	127	D. Marshall , CLE	150	0.459	33	0.593	92	0.866	94	0.866
27	V. Carter , NJN	31	0.612	30	0.664	2	0.995	30	0.918	128	M. Ely , CHA	163	0.450	95	0.569	202	0.81	214	0.81
28	R. Jefferson N.IN	100	0.500	108	0.607	81	0.872	117	0.855	129	K.Brown LAI	217	0.426	214	0.563	260).782	273	0.782
20	S O'Neal MIA	52	h 561	82	0.610	67	0.884	92	0.866	130	Battie ORI	94	504	68	626	55	1 801	60	1 801
20		22	0.001	21	0.013	2	0.004	7	0.064	124		200	1 4 2 2	551	0.020	010	2.031	00 20F	0.031
30	I. MCGrady, HOU	22	0.641	21	0.684	3	0.994	/	0.964	131	D. Williams , UTA	200	0.433	201	0.552	212	1.807	220	0.807
31	B. Miller , SAC	44	J.585	33	0.660	32	0.908	59	0.891	132	N. Collison , SEA	191	0.439	130	0.594	158).828	1/1).828
32	M. Redd , MIL	66	0.528	85	0.617	88	0.868	123	0.853	133	R. LaFrentz , BOS	180	0.442	157	0.582	162).826	173	0.826
33	A. Jamison , WAS	52	0.561	44	0.650	39	0.906	44	0.904	134	B. Haywood , WAS	82	0.518	371	0.513	313	0.76	325	0.76
34	M. Okur . UTA	59	0.550	78	0.622	101	0.86	103	0.86	135	A. McDvess . DET	864	0.363	819	0.533	223	0.8	237	0.8
35	G Wallace CHA	27	0.623	48	0.640	1	1	108	0.858	136	E Boykins DEN	332	381	37	1 5 2 8	302	763	834	757
26		22	0.611	21	0.662	1	1	1	1	127	Granger IND	196	1440	005	5.620	166	1924	176	0.001
30	Diaw, FIIA	5Z	0.011	31	0.002		1	1	1	137		100	0.440	205	5.504	100	0.024	170	0.024
31	J. BOOZER, UTA	67	J.525	84	0.617	54	0.893	65	0.887	138	M. Banks , MIN-BOS	190	0.439	83	0.572	145	1.833	155	J.833
38	J. Richardson , GSW	61	0.547	96	0.612	120	0.85	141	0.842	139	R. Patterson , DEN-POR	142	0.463	233	0.556	165).824	190	0.819
39	J. Johnson , ATL	35	0.607	42	0.652	38	0.906	47	0.903	140	J. Stackhouse , DAL	171	0.447	269	0.547	234	0.796	247	0.796
40	M. James , TOR	28	0.618	15	0.695	10	0.946	13	0.946	141	J. Rose, NYK-TOR	103	0.496	52	0.638	61).887	66	0.887
41	R. Lewis . SEA	57	0.553	51	0.638	70	0.881	85	0.872	142	A. Daniels , WAS	117	0.487	23	0.598	116	0.854	20	0.854
42	B Davis GSW	4	0 732	10	0 712	1	1	q	0.961	143	Blake POR	91	511	66	629	35	906	42	906
42	B. Wallaco DET	-	0.732	0	0.712	1	1	1	1	144		170	0.011	00	0.023	00	700	72	0.300
43	B. Wallace , DET	9	0.710	9	0.715	1	0 707	1	1	144	D. Harris , DAL	178	0.444	285	J.54Z	228	0.799	239	0.799
44	 Ilgauskas , CLE 	49).569	359	0.521	349	0.737	365	0.737	145	J. Tinsley, IND	90	0.513	114	0.604	31	0.908	38	0.907
45	F. Parker , SAS	65	0.530	94	0.613	37	0.906	40	0.906	146	F. Lue , ATL	170	0.448	200	0.566	190	0.814	201	0.814
46	M. Bibby , SAC	47	0.572	69	0.626	87	0.868	99	0.863	147	J. Posey , MIA	239	0.416	248	0.552	134	0.839	47	0.839
47	R. Wallace . DET	124	0.479	366	0.516	353	0.731	869	0.731	148	K. Perkins , BOS	95	0.503	00	0.610	85	0.869	135	0.847
48	Murphy GSW	79	0.520	73	0.624	111	0.856	114	0.856	149	Watson SEA-DEN	246	0 413	801	539	282	774	820	0 761
40	A Millor DEN	10	0.520	97	0.616	11	0.045	126	0.952	150		Q1	519	02	0.612	20	0.024	26	0.022
43	A. Willer, DLN	40	1.509	07	0.010		0.945	120	0.052	150	vi. Janc , ivilin	01	0.010	93	0.013	20	J.324	20	J.923
50	ANI	98	0.500	372	0.512	321	0.757	333	0.757	151	B. Jackson , MEM	143	0.462	16	0.601	99	0.86	106	0.86
-		70	500	45.1	0.500	400	0.01	4.40	0.01	450	D 14 (14 14 14 14 14 14 14 14 14 14 14 14 14 1		4.10		561	100	0.00		0.075
51	5. Cassell, LAC	75).522	154	0.583	133	0.84	143	0.84	152	A. Jefferson , BOS	187	0.440	61).581	123).848	131).848
52	R. Davis , MIN-BOS	96	0.503	109	0.607	66	0.884	69	0.884	153	R. Evans , DEN-SEA	169	0.449	10	0.607	151	0.831	62	0.831
53	C. Butler , WAS	55	0.558	55	0.637	30	0.911	82	0.873	154	T. Thomas , PHX-CHI	856	0.370	272	0.547	127	0.844	195	0.816
54	C. Kaman , LAC	76	0.522	112	0.606	107	0.857	118	0.855	155	L Ratliff , POR	84	0.516	63	0.630	56	0.89	87	0.87
55	A. Harrington . ATL	77	0.520	62	0.631	75	0.878	76	0.878	156	R. Gomes , BOS	221	0.424	141	0.588	156	0.829	65	0.829
56	B Knight CHA	17	0.677	32	0.662	1	1	23	0.924	157	D Songaila CHI	819	386	286	542	197	812	808	0.812
	P Stojakovic IND	···	F		0.002	<u> </u>			5.524										
57	- Glujakuvić, IND-	189	0.439	190	0.570	146	0.833	154	0.833	158	J. Jeffries , WAS	105	0.493	03	0.609	96	0.862	01	0.862
50		00	505		0.070		<u> </u>	40	0.000	450			461		561		0000		0.000
58	B. Wells , SAC	39	J.595	24	0.678	1	1	19	0.932	159	Head , HOU	144	0.461	151	J.584	161	1.826	1/4	J.826
59	R. Hamilton , DET	199	D.433	279	0.544	192	0.814	199	0.814	160	B. Bowen , SAS	223	0.423	216	0.563	97	0.861	02	0.861
60	E. Okafor , CHA	46	0.576	140	0.589	1	1	213	0.81	161	D. Stevenson, ORL	127	0.476	105	0.607	84	0.87	88	0.87
61	K. Hinrich , CHI	51	0.562	92	0.613	18	0.929	50	0.899	162	R. Swift , SEA	152	0.458	62	0.580	164	0.824	84	0.821
62	A louodala PHI	93	0.507	90	0.614	91	0.867	100	0.863	163		125	477	215	0.563	193	813	05	0.813
62	7 Randolph DOD	60	0.547	327	0.514	31/	0.76	824	0.76	164	A Foule GSW/	111	1/20	180	1571	115	1854	017	1 800
03		40	0.547	321	0.031	314	0.70	p∠4	0.70	104		111	0.400	00	0.571	100	0.004	11/	0.009
64	K. ARTEST , SAC-IND	43	0.586	143	0.587	129	0.843	138	0.843	165	p. Payton , MIA	184	v.441	455	v.551	136	1.831	48	0.831
65	 Marbury , NYK 	11	J.703	7	0.724	1	1	1	1	166	p. Wesley , HOU	149	J.459	79	J.575	185	0.815	198	J.815
66	C. Maggette, LAC	226	0.422	343	0.525	68	0.882	133	0.847	167	M. Sweetney , CHI	212	0.428	218	0.563	209	808.0	219	0.808
67	M. Ginobili , SAS	114	0.487	393	0.487	48	0.896	61	0.889	168	Γ. Hassell , MIN	211	0.429	181	0.574	144	0.833	156	0.833
68	. Deng . CHI	146	0.460	177	0.576	102	0.859	111	0.857	169	M. Finley SAS	275	0.402	253	0.551	155	0.829	66	0.829
60		64	1 522	30	0.654	5	0.005	10	0.057	170	S Livingston LAC	135	171	106	1.560	180	1814	00	0.020
70		112	0.002	200	0.004	101	0.000	102	0.001	174	P. Cook I AI	207	1 282	225	5.009	220	0.014 0.7F2	-04 52	0.750
10	p. reny, DAL	112	0.400	209	0.004	101	0.010	192	0.010	1/1	D. COUK, LAL	p∠/	0.382	030	v.≎∠ŏ	JJ0	0.152	200	0.102
71	L. Ridnour , SEA	36	J.605	40	0.653	17	0.93	24	0.924	172	5. Swift , HOU	133	0.472	48	J.585	180	0.818	193	J.818
72	M. Miller, MEM	116	0.487	97	0.611	93	0.866	93	0.866	173	M. Bonner , TOR	159	0.451	06	0.607	80	0.873	83	0.873
73	H. Turkoglu , ORL	70	0.525	56	0.637	47	0.898	53	0.898	174	N. Mohammed , SAS	258	0.409	252	0.552	175	0.82	87	0.82
74	D. Gooden , CLE	121	0.484	89	0,616	59	0.888	64	0.888	175	A. Griffin , DAL	205	0.430	265	0.549	208	808.0	220	0.808
75	I Nelson ORI	48	h 572	45	0.644	24	0.92	28	0.92	176	Ed Najera DEN	0.80	300	222	561	183	817	b11	0.811
70	Z Deshulia ATI	145	0.012	73	0.044	27	0.040	20	0.32	477		-00	1.000	44	0.001	140	2.017	150	0.011
10	L. Pachulla, AIL	115	J.487	11	0.623	26	0.916	13	0.879	1//	. nayes , wAS	126	0.476	44	J.587	149	1.832	159	J.832
77	L Ford MII	42	0.588	43	0.651	21	0.921	37	0 907	178	Б Mav CHA	B50	0.373	854	0.522	359	0 725	876	0 725

	k											L				L			
78	A. Bogut , MIL	74	0.523	75	0.624	53	0.893	58	0.893	179	G. Buckner, DEN	299	0.392	329	0.531	248	0.79	342).755
79	R. Alston, HOU	23	0.636	36	0.657	1	1	18	0.938	180		244).414	264	0.550	281	0.774	301	0.772
80	A. NOCIONI , CHI	182	D.441	210	0.564	159	0.828	109	0.828	101	E. GRINN, MIN	88	J.514	99	0.011	44	0.901	127	J.852
81	N. Krstic, NJN	238	0.418	170	0.579	124	0.847	134	0.847	182	LISON, DEN	315	1.387	273	0.547	211	0.807	231	J.804
02	D. Rahini, SAC	137	0.409	147	0.565	194	0.013	120	0.013	103		209	1.430	044	0.576	134	0.029	240	J.029
84		1/8	0.427	223	0.570	110	0.051	120	0.853	185	C Bogans HOLLCHA	287	1 307	201	540	306	0.799	240	0.757
85	S Dalembert PHI	38	0.400 0.596	46	0.642	1	1	51	0.899	186	S Telfair POR	92	0.507	64	0.040	23	0.92	29	0.92
86	C Villanueva TOR	89	0.500	40	0.641	29	0.911	34	0.000	187	/ Khrvana POR	145	0.007	80	0.020	43	0.02	<u>4</u> 9	0.02 h 902
87	G Hill ORI	71	0.524	50	0.639	52	0.894	56	0.894	188	Calderon TOR	85) 515	57	0.627	33	0.907	39	0.002
88	Hughes CLF	110	0.489	119	0.600	77	0.876	78	0.876	189	R Murray CLE-SEA	164	0.010	67	0.580	148	0.832	160	0.832
89	S Battier MEM	87	0.514	88	0.616	63	0.886	80	0.875	190	Anderson MIA-HOU	220) 424	89	0.570	207	0.808	221	0.808
90	R. Bell . PHX	276	0.402	67	0.628	1	1	89	0.868	191	I. Salmons . PHI	197	0.435	94	0.569	231	0.798	243	0.798
91	L Childress ATI	151	0 458	124	0.598	100	0.86	104	0.86	192	Diee NYK	72	524	58	0.635	73	0.879	75	0.879
92	B Simmons MII	157	1 453	153	0.583	153	0.83	163	0.83	193) Woods NYK	63	1532	49	639	51	0.894	57	0.894
93		816	0.400	302	0.538	191	0.814	200	0.814	194	Van Horn DAI	804	1 391	820	1533	266	0.78	280	0.78
94	S Jackson IND	122	0.307	160	0.530	138	0.836	149	0.836	195	C Atkins MEM-WAS	140	1.331	320	1 593	152	0.70	164	0.70
95	L Eoster IND	179	0.401 0.443	149	0.584	150	0.832	158	0.832	196	S Hunter PHI	213	1 4 2 8	237	0.000	273	0.00	288	0.00 0.777
96	P.I. Brown NOK	107	0 492	72	0.625	74	0.879	74	0.879	197	Snow CLE	129) 475	156	0.582	104	0.858	109	0.858
97	I. Crawford , NYK	25	0.630	16	0.687	7	0.957	11	0.957	198	D. Mason , NOK	158	0.452	26	0.597	128	0.843	40	0.843
98	I Williams MIA	136	0 471	203	0.565	117	0.853	125	0.853	199	D Richardson NYK	56) 556	35	0.659	28	0.913	33	0.913
99	D. Fisher . GSW	109	0.491	176	0.576	170	0.823	183	0.821	200	R. Horry . SAS	253).411	208	0.564	98	0.86	107	0.86
100	F. Chandler . CHI	97	0.501	121	0.600	86	0.868	105	0.86	201	D. George , LAL	274	0.402	284	0.542	263	0.781	276	0.781
101	C. Mihm . LAL	193	0.438	207	0.564	224	0.8	249	0.795	202	S. Jasikevicius . IND	206	0.430	238	0.554	241	0.792	256	0.792
	,									-									
203	C. Andersen , NOK	113	0.487	115	0.602	60	0.887	84	0.873	303	S. Marks , SAS	877	0.352	873	0.512	331	0.754	848	0.754
204	D. Diop , DAL	147	0.460	261	0.550	179	0.818	259	0.791	304	R. Ivey , ATL	328).382	298	0.539	285).773	298	0.773
205	5. Pollard , IND	259	0.409	290	0.542	271	0.779	283	0.779	305	. Murray , NJN	872	0.358	814	0.535	265	0.78	281	0.78
206	J Tsakalidis , MEM	237	0.418	198	0.568	182	0.817	194	0.817	306	W. Simien, MIA	867	0.361	860	0.521	308).761	322	0.761
207	C. Hayes , HOU	245	0.414	219	0.562	218	0.805	232	0.804	307	H. Eisley , DEN-LAC	279	0.400	840	0.526	330).754	349	0.754
208	A. Varejao , CLE	201	0.433	185	0.572	119	0.85	129	0.85	308	Kleiza , DEN	390). <u>33</u> 4	869	0. <u>51</u> 3	358).726	373	0.726
209	K. Dooling , ORL	102	0.497	79	0.621	27	0.914	32	0.914	309	B. Cardinal , MEM	802	0.392	236	0.555	230	0.798	244	0.798
210	C. Robinson , NJN	268	0.404	226	0.558	237	0.794	251	0.794	310	S. Randolph , PHI	B11	0.389	282	0.543	315).759	330).759
211	N. Robinson , NYK	73	0.523	70	0.626	57	0.889	63	0.889	311	J. Reed , MIN-BOS	255	0.410	99	0.568	177	0.819	91	0.819
212	. Diogu , GSW	273	0.402	309	0.537	332	0.754	347	0.754	312	J. Powell , DAL	289).396	342	0.525	318).758	331	0.758
213	B. Robinson , CHA	250	0.412	242	0.553	247	0.79	291	0.775	313	K. Humphries , UTA	849).373	863	0.519	297	0.765	314	0.765
214	E. House , PHX	387	0.338	384	0.501	325	0.756	338	0.756	314	J. Pargo , CHI	812).389	159	0.582	210	0.807	226	0.807
215	K. Snyder, NOK	161	0.450	168	0.580	168	0.823	178	0.823	315	D. Ewing , LAC	360).367	378	0.507	303	0.762	319).762
216	. Walton , LAL	306	0.390	311	0.536	295	0.767	307	0.767	316	C. Delfino , DET	393).323	888	0.499	320	0.757	336).757
217	J. Petro , SEA	210	0.429	341	0.526	226	0.799	241	0.799	317	L Diener, ORL	138	0.469	37	0.589	126	0.844	137).844
218	R. Nesterovic , SAS	216	0.427	118	0.601	69	0.881	71	0.881	318	A. Pavlovic , CLE	278	0.401	293	0.541	187	0.814	203).814
219	J. Jack , POR	128	0.475	76	0.624	34	0.906	43	0.906	319	A. Hardaway , NYK	68).525	27	0.597	9	0.946	14	0.946
220	I. Allen, BOS	208	0.430	232	0.556	203	0.809	218	0.809	320	B. Nachbar , NJN-NOK	339	0.379	316	0.534	336	0.752	354	0.752
221	L.HUOSON, MIN	256	0.409	247	0.552	109	0.856	115	0.856	321	D. MILES, UTA	809	0.390	808	0.537	245	0.79	262	0.79
222	A. Bledrins, GSW	156	0.408	270	0.547	310	0.759	329	0.759	322	- BUIKE, PHA	398	0.300	598	0.408	160	0.715	175	J.7 15
223	Thomas WAS	172	0.455	1/3	0.578	206	0.012	209	0.012	323	Andorson MIA	204	0.390	202	0.505	270	0.020	206	0.020
224	D. Mutombo, HOLL	110	0.440	129	0.505	120	0.000	112	0.000	324	Monia SAC POP	177	0.370	555	0.523	61	0.774	690	0.774
226	S Stoudamire ATI	202	0.400	207	0.535	174	0.042	192	0.042	326	B Scalabrine BOS	281	1 300	244	0.562	2/10	0.000	264).005) 789
227	B Barry SAS	R14	0.335	256	0.540	238	0.02	254	0.02	327	Lidoka NYK	267	1 404	63	1 580	143	1833	157	1.833
228	I. Graham , TOR	233	0.419	139	0.589	125	0.846	136	0.846	328	M. Kasun , ORL	168).449	36	0.590	139	0.835	152	0.835
229	F. Delk . DET-ATL	883	0.343	347	0.524	286	0.773	297	0.773	329	R. Whalev . UTA	884	0.342	392	0.490	360	0.724	377	0.724
230	D. Wilkins , SEA	185	D.441	158	0.582	201	0.81	215	0.81	330	C. Williamson . SAC	807	0.390	804	0.538	278	0.775	292	0.775
231	C. Arrovo , ORL-DET	295	0.393	259	0.551	163	0.824	177	0.824	331	D. Wright . MIA	875	0.353	882	0.504	343	0.746	359	0.746
232	G. Giricek , UTA	859	0.367	356	0.521	329	0.755	343	0.755	332	R. Araujo , TOR	262	0.408	839	0.526	216	0.805	238	0.8
222	M. Olowokandi ,BOS-	167	140	100	0 504	100	0.04	144	0.04	222	Charta SAS	DE 2	1 270	AF	1524	222	0.04	226	0.04
233	MIN	107	7.449	129	0.394	132	0.04	144	0.04	333	. Oberto , SAS	553	0.370	v40	0.024	~~~	100.0	- 30	1.001
234	F. Garcia , SAC	162	0.450	193	0.570	188	0.814	206	0.813	334	B. Bass , NOK	242	0.415	803	0.538	339	0.751	356).751
235	J. Butler, NYK	69	0.525	65	0.629	40	0.904	45	0.904	335	M. Norris, NOK-HOU	207	0.430	249	0.552	221	0.802	234	0.802
236	J. Voskuhl , CHA	270	0.404	234	0.555	232	0.797	246	0.797	336	E. Batista, ATL	847).374	283	0.543	288	0.771	803).771
237	M. Pietrus, GSW	834	0.380	361	0.520	299	0.765	312	0.765	337	L. Cabarkapa , GSW	840	0.378	07	0.607	105	0.857	112).857
238	A. Davis, TOR-NYK	123	J.480	98	0.611	114	0.854	121	0.854	338	K. LURIAT, LAL	330	0.381	B17	0.534	2/7	<i>v.175</i>	293	J.175
239	p. vvright, MIN	153	J.458	59	0.634	46	0.899	52	0.899	339	K. Marshall, DAL	104	0.493	13	0.604	82	0.871	86	J.871
240	D.Gadzuric , MIL	227	J.422	230	0.557	236	0.794	252	0.794	340	James, NYK	204	J.431	246	0.552	354	0.73	5/1	0.73
241	P. MILLICIC, UKL-DET	240	0.416 0.404	275	0.546	2/2	0.778	287	0.778	341	A Bradley DL	591	1.328	146	0.585	113	0.855	122	J.854
242		411 96	0.401	320	0.531	352	0.731	310	0.131	342	VI. DIAUIEY, PHI	243	1.415	r∠ŏ 220	0.500	292	0.707		J./0/
243	Harrison IND	00 295	0.015	325	0.533	70 297	0.011	11	0.011	343		200 274	1.301	სპ ඊ 81	v.5∠b	291 65	7.700 1.604	70	001.00 2021
244		200	0.390	323	0.532	207	0.774	50Z	0.774	344		DF7	1.300	01	0.620	00	0.004	70	J.003
240		155	0.300 1 151	<u>30∠</u>	0.520	200	0.774	290 263	0.114	345	Amstrong, DAL	201	1 375	010 77	0.509	041 014	0.740 0.806	220	7.140 7.806
240	R McCants MIN	1335	0.404	280	0.000	217	0.007	230	0.007	3/17	Thompson PHY	100	1 270	101	0.040	346	7/2	263	7.000 17/12
241	A Carroll CHA	845	375	332	0.520	345	0.000	361	0.743	348	- Basden CHI	324	384	771	547	280	0 77	304	0 77
249	G. Ostertan LITA	320	0.385	351	0.523	334	0.753	350	0.753	349	D. Taylor , WAS	265	0.405	267	0.549	253	0.785	269	0.785
250	M Fillis GSW	260	h 409	322	0.523	328	0.755	344	0.755	350	M Sanders SAS	363	1.363	874	0.511	311	0.76	327	0.76
251	M. Palacio , UTA	248	0.413	306	0.537	243	0.791	260	0.791	351	I. Sampson , SAC	385).341	896	0.479	364).712	381	0.712
252	J. Singleton . LAC	826	0.383	333	0.529	257	0.783	272	0.783	352	W. Bynum , GSW	231	0.421	86	0.571	213	0.806	229	0.806
253	F. Kukoc MII	172	0.446	175	0.577	171	0.822	182	0.822	353	W. McCarty LAC	342	378	227	0.557	199).811	212	0.811
254	M. Taylor . NYK	101	0.497	101	0.610	103	0.858	110	0.858	354	C. Booth , WAS	247	0.413	240	0.553	284	0.773	299	0.773
255	Q. Ross , LAC	337	0.379	364	0.519	173	0.821	185	0.821	355	S. Augmon, ORL	202	0.432	82	0.574	147	0.832	161	D.832
256	M. Rose , NYK	120	0.485	117	0.601	121	0.849	130	0.849	356	I. Vroman , NOK	293	0.395	268	0.549	274	0.776	290	0.776
257	M. Fizer , NOK	106	0.492	83	0.618	22	0.92	31	0.916	357	. Schenscher , CHI	198	0.433	352	0.523	276).775	294	0.775
258	Woods , TOR	230	0.421	288	0.542	1	_1	1	1	358	M. Cleaves , SEA	241	0.416	25	0.597	122).848	132	0.848
259	D. Johnson , DEN	389	0.334	383	0.502	363	0.714	380	0.714	359	H. Seung-Jin , POR	232	0.421	258	0.551	269).779	285	0.779
260	M. Webster , POR	236	0.419	120	0.600	94	0.864	96	0.864	360	D. Mbenga , DAL	203	0.432	810	0.536	301	0.763	816	0.763
261	M. Evans , DET	392	0.323	387	0.500	305	0.762	317	0.762	361	C. Cheaney , GSW	297	0.393	287	0.542	310	0.76	328	0.76
262	/. Lenard , POR-DEN	194	0.438	134	0.592	50	0.895	55	0.895	362	D. Davis , DET	396	0.316	891	0.493	348).737	866	0.737
263	P. Sow . TOR	188	0.440	135	0.591	78	0.875	81	0.875	363	A.Blatche . WAS	B08	0.390	B18	0.533	296	0.766	811	0.766

264	Robraca LAC	661	h 266	22	0.690	0	0.054	12	0.054	264	Duproo MIN	665	h 262	079	545	boa	000	024	h 0.00
265	L. Reblaca , LAC	881	0.300	23/	0.000	0 337	0.954	353	0.954	365	L Edwards ATI	8/11	0.302	270	0.545	204	0.000	224	0.000
266	M Allen CHI	821	1 385	370	0.520	312	0.752	326	0.752	366	B Thomas WAS	235	0.070	855	1.521	244	0.70	263	0.704
267	N. Allen, Ohn S. Vujacic, I Al	813	1 388	225	0.510	83	0.70	168	0.70	367		882	0.415	880	1/0/	368	0.73	205	0.73
268	D Zimmerman NIN	848	374	346	0.500	309	0.761	321	0.023	368	Roberts MEM	886	0.340 0.340	886	0.501	357	1726	874	0.030
269	K McLeod LITA	836	0.074	365	0.517	298	0.765	313	0.765	369	R Brunson HOLLSEA	291	1 395	813	1 535	251	0.720	266	0.720
270	A Anderson CHA	818	0.386	276	0.546	259	0.782	274	0.782	370	Jackson CLE	269	0.000	229	0.557	229	h 798	245	n 798
271	D. Fortson . SEA	290	0.396	217	0.563	167	0.823	179	0.823	371	A. McKie , LAL	866	0.362	323	0.532	283	0.773	800	0.773
272	S. Padgett , NJN	338	0.379	263	0.550	246	0.79	261	0.79	372	K. Burleson , CHA	805	0.391	815	0.535	326	0.755	846	0.755
273	N. Van Exel, SAS	322	0.384	321	0.533	225	0.799	242	0.799	373	D. Smith , ATL	878	0.352	879	0.506	335	0.752	855	0.752
274	A. Barrett, TOR-PHX	141	0.465	174	0.577	131	0.84	145	0.84	374	B. Russell, DEN	401	0.263	100	0.457	333	0.753	851	0.753
275	P. Garrity , ORL	166).449	145	0.585	157	0.828	172	0.828	375	. Newble , CLE	801	0.392	348	0.523	307	0.761	323	0.761
276	A. Carter, MIN	263	0.407	289	0.542	195	0.812	210	0.812	376	A. Miles , GSW	325	0.384	324	0.532	342	0.746	860	0.746
277	M. Ruffin , WAS	183	0.441	178	0.575	184	0.816	196	0.816	377	A. Burks , MEM	B17	0.386	296	0.540	264	0.78	282	0.78
278	B. Outlaw , ORL	108	0.492	71	0.626	71	0.88	72	0.88	378	R. Bowen , HOU	286	0.397	291	0.542	290	0.768	806	0.768
279	V. Baker , LAC	300	0.392	330	0.530	344	0.743	362	0.743	379	J. Lucas , HOU	252	0.412	220	0.561	240).792	257	0.792
280	J. Barry , HOU	54	0.559	165	0.580	62	0.886	79	0.876	380	E. Piatkowski , CHI	843	0.376	357	0.521	319	0.757	337	0.757
281	J. Welsch , MIL	288	0.396	266	0.549	254	0.785	268	0.785	381	N. Tskitishvili , PHX-MIN	397	0.310	897	0.470	369	0.683	886	0.683
282	B. Udrih , SAS	352	0.370	260	0.550	205	0.808	223	0.808	382	A. Roberson , MEM	880	0.349	877	0.507	355	0.729	372	0.729
283	M. Doleac , MIA	283	0.398	307	0.537	275	0.776	289	0.776	383	S. Ford , PHX	803	0.392	895	0.481	361).722	878	0.722
284	M. Moore , SEA	219	0.424	184	0.572	252	0.786	267	0.786	384	E. Johnson , MIL	266	0.404	250	0.552	220	0.802	235	0.802
285	D. Harrington , CHI	355	0.370	367	0.516	294	0.767	308	0.767	385	R. Price , SAC	869	0.360	350	0.523	317	0.758	332	0.758
286	D. Dickau , BOS	228	0.421	142	0.588	108	0.856	116	0.856	386	A. Macijauskas , NOK	176	0.445	87	0.571	200	0.81	216	0.81
287	A. Grundy , ATL	379	0.350	376	0.508	327	0.755	345	0.755	387	M. Wilks , SEA-CLE	810	0.390	299	0.539	255	0.784	271	0.784
288	Profit , LAL	370	0.359	349	0.523	262	0.781	277	0.781	388	J. Thomas , NJN-ATL- MEM	271	0.403	245	0.552	258	0.782	275	0.782
289	K. Cato , DET-ORL	854	0.370	336	0.528	324	0.756	339	0.756	389	Williams , PHI	282	0.399	262	0.550	347	0.74	864	0.74
290	M. Barnes , PHI-NYK	831	0.381	300	0.539	304	0.762	318	0.762	390	J. Maxiell , DET	899	0.298	399	0.462	366	0.707	883	0.707
291	Baxter , CHA-HOU	234	0.419	231	0.557	250	0.788	265	0.788	391	J. Davis , PHX-HOU- MIL	214	0.428	86	0.616	41	0.903	48	0.903
292	C. Taft , GSW	294	0.394	295	0.540	270	0.779	284	0.779	392	A. Wright , NJN	371	0.358	344).525	340	0.75	357	0.75
293	A. Henderson , CLE	175).445	152	0.583	89	0.867	91	0.867	393	E. Gill , IND	876	0.352	381	0.504	350	0.735	867	0.735
294	K. Ollie , PHI	296	0.393	312	0.536	323	0.756	340	0.756	394	M. Andriuskevicius, CLE	229	0.421	92	0.570	13	0.942	16	0.942
295	B. Grant , PHX	895	0.321	95	0.612	49	0.895	67	0.886	395	E. Barron , MIA	833	0.380	274).547	233	0.796	248	0.796
296	Hunter , DET	394	0.321	390	0.493	367	0.705	384	0.705	396	R. Livingston , CHI	225	0.423	868	0.516	268	0.779	286	0.779
297	D. Greene , BOS	249	D.412	221	0.561	140	0.835	151	0.835	397	R. Gaines , MIL	154	0.458	69	0.579	239	0.792	258	0.792
298	W. Green , PHI	823	0.384	305	0.538	293	0.767	309	0.767	398	J. Hodge , DEN	388	0.335	880	0.505	365	0.709	882	0.709
299	P. Podkolzin , DAL	254	0.411	102	0.610	1	1	1	1	399	M.Lampe , HOU-NOK	222	0.423	66	0.580	112	0.855	119	0.855
300	J. Vaughn , NJN	298	0.392	292	0.541	261	0.781	278	0.781	400	V. Wafer, LAL	862	0.365	858	0.521	356	0.726	875	0.726
301	J. Kapono , MIA	873	0.356	385	0.501	322	0.756	341	0.756	401	/. Potapenko , SAC	329	0.382	394).485	351).734	868	D.734
302	H. Warrick , MEM	257	0.409	257	0.551	235	0.794	253	0.794					<u> </u>					

The players' efficiency scores as calculated in this study vary from 0.000 to 1.000, whereas the efficiency scores calculated by the NBA are above or below zero.

Some interesting results are given separately below for four alternatives as compared to the NBA scores:

The results are based on DEA1: It is more meaningful to make these comparisons by considering the rank of each player. The rankings used in this study are very different from the NBA efficiency score rankings for some players. Some players moved forward⁴ or backward in the rankings according to their efficiency level measured via DEA. For example, L. Barbosa of the Phoenix Suns moved backward by 238 positions (from 113 to 351); on the other hand, A. Hardaway of the New York Knicks moved forward by 251 positions (from 319 to 68). In addition, K. Garnett of the Minnesota Timberwolves, who was ranked first, based on the NBA's calculations, moved backward to the third rank based on the new method, however, L. James of the Cleveland Cavaliers, who was ranked third according to the NBA, moved forward to the first position.

The results are based on DEA2: According to the results, M. Ginobili of the San Antonio Spurs moved backward by 326 positions (from 67 to 393), and W. Szczerbiak of

⁴ Moves backward and forward are calculated based on the NBA's rankings.

the Boston Celtics and Minnesota Timberwolves moved backward by 322 positions (from 50 to 372); whereas J. Davis of the Phoenix Suns, Houston Rockets and Milwaukee Bucks moved forward by 305 positions (from 391 to 86) and Z. Planinic of the New Jersey Nets moved forward by 263 positions (from 344 to 81). K. Garnett of Minnesota Timberwolves, who was ranked first based on the NBA's calculation method, moved downward to the third position based on the new method; S. Marion of Phoenix Suns, who was ranked third based on the NBA's method, moved backward to the eleventh position. However, L. James of the Cleveland Cavaliers, who was ranked third, moved forward to the first rank.

The results are based on DEA3: As DEA is used with the average values of variables such as ribaunt in these alternative, full efficient players can be determined. According to the new method, while M. Andriuskevicius of the Cleveland Cavaliers moved forward by 381 positions, J. Dixon of the Portland Trail Blazers for 350 positions. However, R. Turiaf of the Los Angeles Lakers moved backward by 306 lines, Z. Cabarkapa of the Golden State Warriors by 305 positions, W. Simien (MIA) of the Miami Heat by 271 positions. All of the players who were in the first five in terms of their efficiency levels calculated by the NBA are full efficient.

The results are based on DEA4: In this method, J.Dixon of the Portland Trail Blazers moved forward by 378 positions, A. Hardaway of the New York Knicks by 343 positions and P. Podkolzin of the Dallas Mavericks by 305 positions, while R. Turiaf of the Los Angeles Lakers backward by 322 positions, Z. Cabarkapa of the Golden State Warriors by 321 positions and W. Simien of the Miami Heat by 283 positions. All the players in the first five in the NBA except for E.Brand (0.978) are full efficient according to this alternative.

Discussion and Conclusion

It is considered the correlations between the results to determine whether they are consistent. The Spearman rank correlation coefficients for the efficiency statistics obtained by the NBA and the efficiency scores obtained via DEA using the different alternatives are statistically significant (p<0.05). This significant coefficient indicates that all of the methods produce basically consistent results, although some individual differences may arise.

Relations	Spearman correlations					
NBA efficiency score - DEA 1 efficiency score	0.765					
NBA efficiency score - DEA 2 efficiency score	0.586					
DEA 1 efficiency score - DEA 2 efficiency score	0.999					
DEA 1 efficiency score - DEA 4 efficiency score	0.632					
NBA efficiency score - DEA 3 efficiency score	0.983					
NBA efficiency score - DEA 4 efficiency score	0.632					
DEA 1 efficiency score - DEA 3 efficiency score	0.765					
DEA 2 efficiency score - DEA 3 efficiency score	0.635					
DEA 1 efficiency score - DEA 4 efficiency score	0.529					
DEA 2 efficiency score - DEA 4 efficiency score	0.919					

It will be useful to determine which approach represents the success of players and the team better and to discover which methods better predict success. Accordingly, our aim is to compare the effects of team success on the efficiency scores calculated using each of the four alternatives to the NBA system. To this end, the number of baskets scored by the team in each game is used as the criterion for success. Our hypothesis is that if the players' performances (efficiency levels) are enhanced, the performance of the team will improve, as evidenced by a higher team score⁵. Our primary objective is to determine how the efficiency levels calculated using each method and NBA method will impact team success. To achieve this goal, the players who are played in each game were identified. First, sum of the individual player' efficiency score was computed to obtain the total efficiency score of the team. Then, the points by the team in a game are attributed to each player, and the sum of these individual player points was computed to obtain the total game scores of the team. Finally, the total

⁵ Two important points should be clarified. The main challenge here is to determine how the efficiency levels calculated to measure a player's performance will affect team performance. On one side there are a few teams and some success craterous which can be explained in different ways on the other side there are many players. Therefore, the units in each series are not equal. To compare them, it is necessary to make equal the number of units in each series. For this purpose (for the NBA system and each of the methods in this study), the performance indicators of all of the players on a team have been reduced to equal the number of teams, considering the teams in which they take place. In other words, a value had been obtained for each team by adding the players' performances. A value has been obtained from the player's performance for the team in this manner, and the scores of the team have been taken as the team success that will be used in comparison. One may question why the total score has been used as the criterion or why only the scores have been used. It is accepted that the best indicator of success is the score. For a team to achieve a higher score, the team must defend well, steal often, gain more rebounds and attack well. Additionally, when using more than one statistic, one may question why those statistics were used or why they were weighted differently. Therefore, the score is the most useful indicator in this pilot study. Other indicators may be utilized in the studies to follow.

efficiency score values and the sums of the game scores obtained from each team were put into two different series to observe the correlation. The alternative with the highest correlation will be considered better measurement – ceteris paribus.

The hypothesis is that if the aggregate NBA efficiency score of a team is high, that team will be more successful. So the relationship between NBA efficiency scores and the team game scores (accepted as one of the performance indicators) will be analyzed by taking into account this hypothesis. The same practice has been applied to the other four efficiency indicators calculated in this study. The results are in the Table 4.

The correlations of	
NBA efficiency scores total-match score total	0.55
Efficiency scores basis on DEA1 and game scores	0.57
Efficiency scores basis on DEA2 and game scores	0.56
Efficiency scores basis on DEA3 and game scores	0.59
Efficiency scores basis on DEA4 and game scores	0.60

Table 4. Efficiency scores and success relations.

The results indicate that all of the alternatives presented in this manuscript represent team success better than the NBA system does. We observe that the twoinput and five-input alternatives (DEA3 and DEA4), in which the season average was used, have higher correlations with team performance and also a higher representative force. The reason for this result may be that the efficiency scores obtained from the statistics based on each player's season average include the full-efficient decision units. For each player, only one efficiency score is calculated for the entire season.⁶ Accordingly, the ranking obtained from the method is completely represented. Even though each game is taken as a different decision unit in the alternative systems, this study yield very useful information, the efficiency scores based on the average statistics under data limitation represent the success better than those of the NBA system and the other alternatives which are computed in this study. Because of these results, discussing

⁶ In the case in which each game is a separate decision unit, a player may have a lower efficiency score in one game than in other games, even though he is fully efficient in those other games. To measure a single efficiency score for a player, the average of the efficiency scores of the player for each game is calculated. As long as the efficiency score is not 1 in all of the matches, the average efficiency score will be lower than 1 as well

the offered method in the scientific community may yield useful results, and decisionmakers may use these results in making decisions.

The scores obtained using DEA appear to be significant for the some economic and managerial reasons.

• The first reason is economics. The definitions in the science of economics are basically based on relative rather than absolute values. However, the efficiency scores calculated by the NBA that indicate player performance are based on absolute values. In other words, they are calculated by adding, subtracting, multiplying and dividing the statistics for the player in question. Clearly, a player's success is also closely associated with the performance of his own team and with that of his opponents. Therefore, any calculation based on absolute values may yield misleading results. All of the variables were excluded from the scores calculated by the NBA except for the statistics that referred to the player himself. However, an activity that has as much of an effect on society and the economy as NBA basketball does should be analyzed in ways that will express the economic truth more meaningfully. The scores calculated in this study serve this purpose.

• The second reason is the scores calculated here better help to determine the real value of each player. Essentially, this study contributes valid and clear information about this product. The players themselves, who are the employees in this context, can also learn from this information. For example, they might be able to use this data to assess and learn their real value as producers. This data also allow team managers (the employers) and the fans (the customers) to learn the players' real value.

There are differences between the ranking of the players obtained using the NBA system and the ranking obtained using the methods recommended here. As discussed earlier, there is a more significant relationship between team success and the efficiency scores obtained from the methods recommended here than there are between team success and the NBA efficiency scores. Such changes would serve to distribute resources more efficiently, reflecting an improvement in the accuracy of economic decision mechanisms in this context. It is also important to note that players in the top ranks according to their NBA efficiency scores may not be able to achieve the same success when they change teams because those scores do not adequately reflect the economic reality.

All in all, the new method presented in this paper offers a more useful means of evaluating the performance of NBA players as well as that of individuals in other basketball federations and different sports. This method may also make it possible to determine the real values of these players and to allocate financial resources more successfully. To that end, this approach can be used in transfer decisions or player contract negotiations. However, the existing statistics do not provide exact measurements of efficiency. To solve this problem, more specific player statistics should be obtained.

References

- Atkinson, S. Stanley, L. & Tschirhart, J. (1988). Revenue sharing as an incentive in an agency problem: An example from the national football league. *Rand Journal of Economics*, 19, 27-43.
- Banker, R. D. Charnes, A. & Cooper, W. W. (1984). Some models for estimating technical and scale inefficincies in data envelopment analysis. *Management Science*. 30(9), 668-697.
- Barget, E, Gouguet, J. J. (2007). The total economic value of sporting events theory and practice. *Journal of Sports Economics*, 8(2), 165-182.
- Berri, D. J. (1999). Who is most valuable? Measuring the player's production of wins in the national basketball association. *Managerial and Decision Economics*, 20, 411-427.
- Berri, D. J. & Jewell, R. T. (2004). Wage inequality and firm performance: Professional basketball's natural experiment. *Atlantic Economic Journal*, 32(2), 130-139.
- Berri, D., Martin, S. & Stacey, B. (2006). The Wages of Wins: Taking measure of the many myths in modern sport. Stanford University Press.
- Butenko, S., Gil-Lafuente, J. & Pardalos, P. (2004). Economics, management, and optimization in sports. Springer.
- Butenko, S., Gil-Lafuente, J. & Pardalos, P. (2010). Optimal strategies in sports economics and management, Springer.
- Carmichael, F. & Thomas, D. (1995). Production and efficiency in team sports: An investigation of rugby football league. *Applied Economics*, 27, 859-869.
- Carmichael. F., Thomas, D., & Ward, R. (2001). Production and efficiency in association football. *Journal of Sports Economics*, 2, 228-243.

- Charnes, A., Cooper, W. W. & Rhodes, E. (1981). Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through. *Management Science*, 27(6), 668-697.
- Charnes, A., Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. *European Journal of Operational Research*, 2, 429-444.
- Coelli, T., Rao, P., O`Donnell, C. J. & Battase, G. (2005). An introduction to efficiency and productivity analysis. Kluwer Academic Publishes.
- Coelli, T. A. (1996). Guide to DEAP version 2.1. CEPA Working Paper.
- Cooper, W. W., Ruiz, J. L. & Sirvent, I. (2009). Selecting non-zero weights to evaluate effectiveness of basketball players with DEA. *European Journal of Operational Research*, 195, 563-572.
- Farrell, M. J. (1957). The measurement of production efficiency. *Journal of the Royal Statistical Society*, Series A, General, 120(3), 253-290.
- Fizel, J. L. & D'Itri, M. (1996). Estimating managerial efficiency: The case of college basketball coaches. *Journal of Sport Management*, 10, 435–445.
- James, B. & Henzler, J. (2002). Win Shares. STATS Publishing, Morton Grove, IL.
- Haas, D. J. (2003). Productive efficiency of English football teams: A data envelopment analysis approach. *Managerial and Decision Economics*, 24, 403–410.

Hollinger. J, (2005). Pro basketball forecast, Potomac Books Inc., Dulles, VA.

- Krautmann, A. C. & Berri, D. J. (2007). Can we find it at the concessions? Understanding price elasticity in professional sports. *Journal of Sports Economics*, 8, 183-191.
- Leadley, C. J. & Zygnot, Z. X. (2005). When is the honeymoon over? National basketball association attendance 1971-2000. *Journal of Sports Economics*, 200(6), 203-221.
- Lee, Y. H. & Berri, D. (2008). A re-examination of production functions and efficiency estimates for the national basketball association. *Scottish Journal of Political Economy*, 55(1), 51-66.
- Leibenstein. H. & Maital, S. (1992). Empirical estimation and partitioning of x-inefficiency: A data envelopment approach. *The American Economic Review*, 82(2), 428-433.
- Lewis, H. F., Sexton, T. R. & Lock, K. A. (2007). Player salaries, organizational efficiency, and competitiveness in major league baseball. *Journal of Sports Economics*, 8 (3), 266–294.
- McGoldrick, K. & Voeks, L. (2005). We got game!: An analysis of win/loss probability and efficiency differences between the NBA and WNBA. *Journal of Sports Economics*, 6, 5-23.

- Osborne, E. (2001). Efficient markets? Don't bet on it. *Journal of Sports Economics*, 2, 50-61.
- Rodney, J. P. & Weinbach, A. P. (2002) Market efficiency and a profitable betting rule: Evidence from totals on professional football. *Journal of Sports Economics*, 3, 256-263.
- Schmidt, M. B. & Berri, D. J. (2001). Competition and attendance: The case of major league baseball. *Journal of Sports Economics*, 2(2), 147-167.
- Schmit, M. B. & Berri, D. J. (2005). Concentration of playing talent: Evolution in major league baseball. *Journal of Sports Economics*, 6, 412-419.
- Scully, G. W. (1974). Pay and performance in major league baseball. *American Economic Review*, 64, 915-930.
- Scully, G. (1989). The business of major league baseball. Chicago, IL: University of Chicago Pres.
- Sueyoshi, T., Ohnishi, K. & Kinase, Y. A. (1991). Benchmark approach for baseball evaluation. *European Journal of Operational Research*, 15(3), 429-448.
- Surden, D. G. (2006), The coase theorem and player movement in major league baseball. *Journal of Sports Economics*, 7, 201-221.
- Winston, W. L. (2009). Mathletics: How gamblers, managers, and sports enthusiasts use mathematics in baseball, basketball, and football, Princeton University Press, New Jersey, US.

www.nba.com.

- Yesilyurt, M. E. (2008). Efficiency and spatial relations in education sector -Congestion, input slacks and hidden unemployment-. *Iktisat Isletme ve Finans*, 23(263), 53-69.
- Zech, C. E. (1981) An empirical estimation of a production function: The case of major league baseball. *American Economist*, 25, 19-23.

Appendix 1. Stats of teams.

Rank	Teams	Assists	Steals	Blocs	Turnovers	Personal fouls
1	New York Knicks	29	20	28	1	1
2	Dallas Mavericks	28	13	2	24	19
3	Portland Trail Blazers	27	28	9	8	20
4	Orlando Magic	26	24	17	6	10
5	New Orleans/Oklahoma City Hornets	25	8	23	26	22
6	Washington Wizards	24	2	21	21	18
7	Cleveland Cavaliers	23	17	15	19	24
8	Houston Rockets	22	12	22	10	17
9	Memphis Grizzlies	21	11	7	22	23
10	Toronto Raptors	20	27	29	28	6
11	Atlanta Hawks	19	14	14	4	2
12	Indiana Pacers	18	9	11	5	21
13	Philadelphia 76ers	17	3	13	17	25
14	Miami Heat	16	25	8	14	15
15	Golden State Warriors	15	6	16	18	8
16	Seattle SuperSonics	14	5	24	9	9
17	Los Angeles Clippers	13	23	1	15	16
18	Minnesota Timberwolves	12	19	5	13	14
19	San Antonio Spurs	11	22	6	23	26
20	Charlotte Bobcats	10	1	18	16	7
21	Boston Celtics	9	16	10	2	4
22	Los Angeles Lakers	8	4	19	20	13
23	Utah Jazz	7	26	4	3	5
24	Milwaukee Bucks	6	10	27	12	11
25	Chicago Bulls	5	29	20	7	3
26	Sacramento Kings	4	7	25	11	28
27	New Jersey Nets	3	18	26	25	12
28	Detroit Pistons	2	15	3	29	29
29	Phoenix Suns	1	21	12	27	27